Resource Efficiency Benchmarks in the Chemical Industry

IAMC Toolkit Innovative Approaches for the Sound Management of Chemicals and Chemical Waste

Introduction

Raw materials and waste are often the highest costs of production in the chemical industry. Improving material efficiency and reducing waste can significantly improve economic performance at a company and improve its environmental performance.

This presentation provides:

- Formulas for calculating material, energy work and plant efficiency;
- Example resource and pollution intensity benchmarks for selected chemical subsectors;
- Example benchmarks for chemical consumption and waste for the production of specific chemicals (e.g. polystyrene).

Contents

- 1. Introduction to Resource Efficiency in the Chemical Sector
- 2. Example Benchmarks
 - Chemical sector overview
 - Specific chemical processes
- 3. Introduction to EC BREF Documents

Introduction to Resource Efficiency in the Chemical Sector

Definition of Resource Efficiency

Resource efficiency* = Productivity =

*at full load

Resource efficiency

Material efficiency (e.g. kg/kg): higher potential in core techniques

Product output

Resource input

- Energy efficiency (e.g. kg/kWh): higher potential in peripheral techniques
- Work efficiency (e.g. kg/personnel hour)
- Plant efficiency (e.g. kg/plant hour)

The amount of resources used is the basis of resource efficiency.

Resource Efficiency Potential of the Chemical Industry

Resource Efficiency Potential of the Chemical Industry

Common characteristics and challenges in the chemical industry:

- High amount of input resources and high related costs
- High amount of by-products and waste

The potential for reducing resource consumption and costs in the chemical industry is high.

Example: Wasted potential in the **pigment and dyestuff** industry:

1 ton of product...

Requires 700 kg of solvent

Produces 100 kg of organic residual waste to be incinerated

Generates 72,500 kg of process wastewater

Potential to improve material efficiency, reduce the amount of waste, improve profitability and sustainability performance

Example Benchmarks

Chemical sector overview

Specific chemical processes

Resource Efficiency Potential at a Chemical Plant

The entire chemical plant production system should be considered to identify areas with resource efficiency potential.

10

Example Benchmarks for Chemical Synthesis

High amounts of waste in the chemical industry even when applying best practice

Example: stoichiometric and material efficiency in selected German chemical subsectors (synthesis):

Selected subsectors	Stoichiometric	Material efficiency (%)	
	conversion (%)		
Pharmaceuticals	86	20	
Pigments and dyestuffs	88	26	
Plant protection	89	36	
Other specialty chemicals	<u> </u>	62	
Commodity chemicals	90	76	
Average	88	38	

Material Efficiency in the Chemical Sector

Average solvent and water consumption and halogen input as waste

Selected subsectors	Solvent consumption [kg/t of product]	Water consumption [kg/t of product]	Halogen [Input, kg/t of product; per cent input as waste]
Pharmaceuticals	3,200	5,400	363 kg; 78%
Pigments and	700	71,200	368 kg; 88%
dyestuffs			
Agrochemicals	250	6,400	364 kg; 74%
Specialty chemicals	100	1,500	59 kg; 75%
Basic chemicals	0	1,900	

⇒ Material efficiency can still be improved.

Source: based on Steinbach

Example: Effluent Load Typical of LVOC* Processes

								E	missio	n prior	to biol	ogical tre	eatmen	t			
	w	astewat	er volur	ne		C	DD						ΑΟΧ				
Product		m ³	³ /t			Kg	g/t			-	g/t	-	-		m	g/t	
	<0.1	0.1-1	1-10	>10	<0.1	0.1-1	1-10	>10	<0.1	0.1-1	1-10	10-100	>100	<0.3	<1	1-10	>10
L. Olefins																	
C1=;C2=;C3=		х				X											
1.3-Butadiene		х			x												
Acetylene			x				X										
2. BTX																	
Benzene /Toluene	x				X												
Ethylbenzene/Cumene		X			X				x								
Styrene			x		X												
3. EDC/VC, organochlorides																	
EDC	x				x				X						х	X	
EDC		Х				X				X						X	
Methyl chloride			X			X	Х			X					Х		
Epichlorohydrin				x			х						Х			Х	

1. * LVOC = Large volume organic chemicals

Source: based on EC LVOC D1, 2014

Waste in the Chemical Sector

Average amount of residual waste incinerated

Selected	Inorganic material	Organic material	Water
subsectors	[kg/t of product]	[kg/t of product]	[kg/t of product]
Pharmaceuticals	150	3,600	1,400
Pigments and	1	100	5
dyestuffs			
Plant protection	90	330	620
Specialty chemicals	1	40	5
Commodity	5	20	130
chemicals			

Source: based on Steinbach

Waste in the Chemical Sector

Average amount of process wastewater treated in wastewater treatment plants

Selected	Inorganic material	Organic material	Water
subsectors	[kg/t of product]	[kg/t of product]	[kg/t of product]
Pharmaceuticals	590	320	5,000
Pigments and	3,600	480	72,500
dyestuffs			
Plant protection	630	160	8,200
Specialty chemicals	120	40	1,400
Commodity	1	20	1,900
chemicals			

Source: based on Steinbach

Average amount of process wastewater treated in wastewater treatment plants

Example: consumption of electricity in process and peripheral technologies in Germany

⇒ Energy efficiency potential exists mainly in **peripheral** technologies.

Energy Efficiency in the Chemical Sector

Energy efficiency potential in peripheral technologies

(analysis from selected German companies)

	Average	Range
Area	(%)	(%)
Compressed air (n*=4)	22.5	5-50
Motors (n*=2)	19	2-50
Pumps (n*=3)	30	5-50
Heat and cooling		
utilities, heat		
integration (n*=3)	17.5	5-30

*n= number of companies analyzed

Source: based on BiPRO et al.

⇒ The potential for improvement is still high.

Example Benchmarks

Chemical sector overview

• Specific chemical processes

D

BAT Specific to Polystyrene (PS) Production (GPPS Method)

Chemicals consumption and waste produced in PS production

Unit per ton of product	BAT AEL				
Air emissions		<u>Notes:</u>			
g	20	1) The emission values in			
g	85	the water are measured			
Water emissions					
g	30	Wastewater can either be			
g	10	treated at an in-plant			
g	1.5	facility or at a contralized			
t	0.8				
t	0.5	location.			
Waste					
kg	0.5	2) Cooling water, purge			
kg	2	water not included			
Consumption					
GJ	1.08	Hazardous waste (for			
t	0.985	treatment or incineration)			
t	0.02	in kilograms per ton of			
t	50	product (kg/t)			
t	0.596	4) Inert waste (for landfilling)			
t	0.022	in kilograms per top of			
t	0.001	product (kg/t)			
t	0.005				
	Unit per ton of product Air emissions g g Water emissions g <td< th=""><th>Unit per ton of product BAT AEL Air emissions 20 g 20 g 85 Water emissions 9 g 30 g 10 g 10 g 1.5 t 0.8 t 0.5 Waste 0.5 kg 0.5 kg 2 Consumption 1.08 t 0.985 t 0.02 t 50 t 0.596 t 0.001 t 0.005</th></td<>	Unit per ton of product BAT AEL Air emissions 20 g 20 g 85 Water emissions 9 g 30 g 10 g 10 g 1.5 t 0.8 t 0.5 Waste 0.5 kg 0.5 kg 2 Consumption 1.08 t 0.985 t 0.02 t 50 t 0.596 t 0.001 t 0.005			

Source: based on EC 2007, page 263

Unsaturated Polyester Production

Energy and water consumption and emissions

UP	Unit	BAT AEL range			
	Consu	mption			
Energy	GJ/t	2	3.5		
Water	m³/t	1	5		
Emissions to air					
VOC to air	g/t	40	100		
CO to air			50		
CO ₂ to air	kg/t	50	150		
NO _x to air	g/t	60	150		
SO ₂ to air	g/t	~0	100		
Particles to air	g/t	5	30		
Waste					
Hazardous waste for external treatment	kg/t		7		

Source: based on EC 2007, page 269

Styrene from Ethylbenzene (EB) Dehydrogenation

VOC emissions from shared end-of-pipe abatement:

Composition: VOCs, CH_4 , SO_2 , NO_X , CO_X , dust, NMVOCs Monitoring: normally after abatement device, spot samples

VOC emissions in grammes per ton of styrene monomer (SM)				
SO ₂	1.4–3			
NO _X	130–160			
CO	4–7			
PM	5–9			
NMVOC	2–3			

Source: based on EC LVOC 2014, page 502

VOC emissions from fugitive emissions:

Composition: CO, CO₂, NMVOCs, methane, EB, styrene, aromatics Monitoring: kg per ton of EB or kg per year, using the method described in the CWW BREF

Amount: 3–16 g per ton of styrene monomer

Styrene from Ethylbenzene Dehydrogenation

Emissions to water: ethylbenzene, styrene, benzene Monitoring: TSS, pH, COD

Effluent concentration after pretreatment prior to wastewater treatment plant

	Analytical method MN 31147 (mg/l)			
Ethylbenzene	0.75	0.1		
Styrene	1.25	0.0		
Benzene	0.1	0.0		
TSS	5	100		
рН	n/a	7.6		

Source: based on EC LVOC 2014, page 504

Styrene from Ethylbenzene Dehydrogenation

Energy consumption:

Values of energy-related utilities in kWh per ton of EB						
Electricity	70-170					
Steam	1,350-2,300					
Total	1,500-2,350					
Energy recovery	0-800					

Source: based on EC LVOC 2014, page 505

Raw material consumption:

- The main raw materials used are ethylbenzene and the catalyst.
 EB consumption: 1,040-1,166 kg per ton of styrene monomer
 Water consumption:
- Most of the water is used as boiler feed water to generate the steam needed in the reaction, up to 4 m³ per ton of styrene monomer (Cefic).

Styrene from Ethylbenzene Dehydrogenation

Co-products and by-products:

Principal co-products and by-products in kg per ton of SM					
Hydrogen	up to 50				
Benzene	up to 20				
Toluene	16-94				

Waste generation:

Waste streams in kg per ton of SM		
Spent catalyst waste	up to 0.4	
Coke from the reaction		
Tar	up to 22 (9-71)	
Gums, oligomers of polystyrene	up to 5	
Spent solvents	(1.5-6)	

Source: based on EC LVOC, 2014, page 505

Introduction to EC BREF Documents

BREFs and Where to Find Them

What are BREFs?

Best Available Techniques (BAT) reference documents

BREFs

- Increase process efficiency, rate of yield, etc.
- Reduce environmental pollution, chemical input, etc.

Where to find them?

http://eippcb.jrc.ec.europa.eu/reference/

Content of BREFs

- Each document provides information on a specific industrial/agricultural sector in the EU including
 - Techniques and processes used in the sector
 - Current emission and consumption levels
 - Techniques to consider in the determination of the best available techniques (BAT) and emerging techniques
- A list of references (background material) is quoted in the reference document.
- Links to websites containing relevant legislation/standards
- Additional technical information

Overview of Available BREFs

Title, acronym, year	Key chemicals addressed
Production of Chlor-alkali, CAK, 2014	Chlorine, brine
Production of Cement, Lime and Magnesium Oxide, CLM, 2013	Cement, lime, magnesium
Common Waste Water and Waste Gas Treatment, CWW, 2003 (Final draft 2014)	Wastewater and waste gas
Emissions from Storage, EFS, 2006	Liquids, liquefied gases and solids
Industrial Cooling Systems, ICS, 2001	
Large Volume Inorganic Chemicals – Ammonia, Acids and Fertilisers, LVIC-AAF, 2007	Ammonia, nitric acid, sulphuric acid, NPK (nitrogen, phosphorus, potassium) fertilizers, etc.
Large Volume Inorganic Chemicals – Solids and Others Industry, LVIC-S, 2007	Aluminium fluoride, calcium carbide, carbon dilsulphide, etc.
Large Volume Organic Chemical Industry, LVOC, 2003 (Draft 1, 2014)	Lower olefins, benzene, toluene, acrylonitrile, etc.
Manufacture of Organic Fine Chemicals, OFC, 2006	Dyes and pigments, organic explosives, pheromones

Overview of Available BREFs

Title, acronym, year	Key chemicals addressed
Production of Polymers, POL, 2007	Synthetic fibres and rubbers, etc.
Production of Pulp, Paper and Board, PP, 2001	Sulphate, sulphite
Refining of Mineral Oil and Gas, REF, 2015	Lower olefins
Production of Specialty Inorganic Chemicals, SIC, 2007	Silicones, specialty inorganic pigments, cyanides, etc.
Surface Treatment of Metals and Plastics, STM, 2006	
Surface Treatment Using Organic Solvents, STS, 2007	Metal coils, waterproofing, adhesive application, etc.
Tanning of Hides and Skins, TAN, 2013	
Textiles Industry, TXT, 2003	Fibre preparation, dyeing, etc.
Wood-based Panels Production, WBP, 2014 (only Final Draft available)	
Waste Incineration, WI, 2006	Incineration, pyrolysis, gasification
Waste Treatment, WT, 2006	Hazardous and non-hazardous

Key Messages

- Raw materials and waste are often the highest costs of production in the chemical industry.
- Improving material efficiency and reducing waste can significantly improve economic performance at a company and improve its environmental performance.
- Resource and pollution intensity indicators can be developed to drive continuous improvement and reduce costs at companies
- Industry and sector-specific indicators can be used as a benchmark
- Using the EC BREFS can
 - Increase process efficiency, rate of yield, etc.
 - Reduce environmental pollution, chemical input, etc.

Sources

Sources

- CSD Engineers, Switzerland / ISSPPRO, Germany, 2015
- BiPRO / BZL, Analyse von Ressourceneffizienzpotenzialen in KMU der chemischen Industrie, VDI ZRE, 2014
- CEFIC, Facts and Figures, January 2009
- European Commission, Reference Document on Best Available Techniques in the Production of Polymers, 2007.
- European Commission, Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals- Ammonia, Acids and Fertilisers, 2007.
- European Commission: BAT Reference Document in the Large Volume Organic Chemical Industry (LVOC), 1st draft, 2014.
- European Commission, BAT Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector, Final draft, 2014.
- Fleiter et al., Energieverbrauch und CO2-Emissionen industrieller Prozesstechnologien - Einsparpotenziale, Hemmnisse und Instrumente. Stuttgart: Fraunhofer-Institut f
 ür System- und Innovationsforschung, 2013
- Steinbach, Ressourceneffizienz und Wirtschaftlichkeit in der Chemie durch systematisches, Process Life Cylce Management. Weinheim, Wiley-VCH Verlag, 2013

ISSPPRO GmbH, Germany, 2015

Disclaimer

This presentation was prepared with the requested diligence and with the generally accepted principles of the relevant field.

If a third party uses the contents of the presentation in order to take decisions, the authors disclaim any liability for any kind of direct or indirect (consequential) damage.